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Coupled dynamics of fast spins and slow interactions in neural 
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Absbact.~ We examine an Ising spin system io which both spins and the interactions between 
them may evolve in time, although on d i s p t e  timesales, such thaf the couplings change 
adiabatically. In thermal &yilibrium we find B novel application of the replica method. but 
for finite replica number. representing the ratio of the temperatures of the spm and interaction 
systems. Regimes where the motion of the coupliogs has non-uivial effects are found in addition 
to those where solely the stochasticiry of these interaction weights is signifianf and this issue is 
claselv related to the orders of the Innsitions between the various Dhases obsemd. Simulation 
results lend ruppon to the analpis. 

1. Introduction 

In nature few propenies of a system can be considered truly static; although observations 
may centre on relatively fast processes, there are likely to exist slower motions that may bear 
highly significantly upon the entire system if only given sufficient time. .For example, if one 
examines neurophysiological tissue, even though the operation of this tissue may primarily 
relate to the behaviour of the neurons, it is clear that the relatively slow development of 
the synapses fundamentally influences the pattems of neuronal activity, with consequent 
implications for the functionality of that tissue. Moreover, in this case the evolution of 
the synapses smongly depends on the neuronal activity itself, producing a richly interacting 
system. Whilst one might focus on the dynamics of the neurons, it would be of considerable 
interest to examine how neurons and synapses evolve together. Such problems are, however, 
notoriously difficult to analyse. In this paper we offer a simple model which may offer 
insight into some of the general properties of such systems with two levels of dynamics. 

For definiteness we will consider an idealized magnetic spin model, in which the 
interactions between the spins can evolve dynamically in response to their state, this itself 
being the product of some dynamical laws. The relation of this picture to that of McCulloch- 
Pitts neurons interacting via synaptic efficacies will allow some connection to be made 
between our model and neurophysiology. in addition to spin systems. Although studies 
of artificial neural networks have predominantly focused on either neuronal dynamics with 
fixed interactions (e.g. Amit er a1 1987, Coolen and Ruijgrok 1988) or on evolution of 
synapses for fixed neuron states (e.g. Gardner 1988), there have been some attempts to 
unite.these two approaches (e.g. Shinomoto 1987, Joke r  and Coolen 1991). In view of 
the complexity of this goal, it is inevitable that the systems amenable to analysis will be 
somewhat contrived. Although our model is no exception, it promises some generality and 
also suggests new analytical techniques. 
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The crucial feature of the systems with which we are concerned, is that the interactions 
between the fast variables (be. they spins or neurons) change much more slowly than the 
fast variables themselves. For conventional magnet& although the states of the moments 
might predispose their mutual influences to change, slow atomic diffusion processes are 
usually necessary to alter the interaction smngths. Similarly, although with a less extreme 
separation of timescales, the dynamics of neurons are known to occur over far shorter 
times than does evolution of the synaptic efficacies. It is therefore reasonable to idealize 
this separation between spin and interaction-weight dynamics, and assume that changes 
in the interactions occur adiabatically, responding to the equilibrium character of the fast 
(spin) variables. Further, biological plausibility of the synaptic-weight dynamics, in terms 
of depending only on locally available information, leads to a simple form of dynamical 
law which can, under appropriate circumstances, be given as a gradient descent. This 
facilitates consideration of the equilibrium properties of the entire system, which will be 
the characteristics on which we will focus. 

The form of dynamical laws which we propose will take us into the realm of the replica 
method (see, e.g. Mkzard er nl 1987), but with a finite number of replicas, n ,  without 
following the conventional limit n + 0. The generalization of this method to finite n is 
an interesting matter in itself and our work will offer some investigation of the method for 
positive n.  

2. Formulation of the model 

We will be concerned with a system of N Ising spins (or formal neurons), S; E {+I) 
i E (l..N), connected by symmetric couplings, A,, and where both spins and interactions 
are endowed with dynamical laws. For the spins we will imagine a stochastic local field 
alignment, given as a single spin-flip Markov process 

in which p((Si); t )  is the microstate probability for a given spin configuration (Si), at time 
t .  and the W’s are spin transition rates. The choice 

W(Si -+ 4;) = $(l - tanh(8S;h;)) 

corresponding to a Glauber dynamics, will allow us to immediately specify the equilibrium 
form of p((Si); t )  (i.e., p ( { S i ) ,  CO)), dependent on the temperature T = p-’ and the 
choice of J;j (provided these are indeed symmenic, and remain essentially static over the 
timescale of the spin equilibIiation). The interactions will be taken to evolve in response 
to the state of the spin system, in addition to extemally imposed biases, according to some 
Langevin dynamics. Without careful choice of the dynamical laws for the weights, it is 
most improbable that such richly interdependent laws would be amenable to analysis except 
by simulation. 

The separation of timescales between the two levels’of dynamics suggested by nature, 
together with some biological consmints relevant to the neurological case, suggest a 
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conveniently simple form of the weight dynamics. That the weights evolve only slowly 
suggests that they should depend on equilibrium correlation functions of the spin system, 
(SjSj  . . , Sn}, ,which themselves depend on the current distribution of weights. However, 
neurophysiology imposes two extra significant requirements. Firstly, and Unsurprisingly, we 
would like the weights to remain finite. Secondly, and more significantly, it is desirable that 
a synapse should evolve in response only to locally available information, hence, Jij should 
only take account of (Si} ,  ( S i )  and (S iS j } .  Requiring that the weights remain symmetric 
under the dynamics limits one to the combinations (S i } (S j )  and (S iS j ) .  Motivared by the 
Hebbm trend in the synapses linking neurons in neurological tissue, we propose to consider 
interaction dynamics of the following prototypical form: 

In addition to the (weight-dependent) equilibrium correlation between two spins, a weight- 
decay term along with biases, K;,,  and a Gaussian white noise, q j j ( r )  are involved. The 
noise is of mean zero and has covariance given’ by 

(qij(r)qkl(t‘)) = 2,Ttr8ij,&l6(t - t’) (i < j ,  k < I )  (2.4) 

whereby we  define^ the temperature of the interaction system (? = $-I). Factors of N, 
where present, are necessary to ensure non-hivial behaviour in the thermodynamic limit 
N + W. (The weight dynamics considered by Shmomoto (1987) closely resemble (2.3). 
but without a noise term.) Henceforth, in our discussions of the dynamics of the weights, 
we wit1 focus only on the representative upper uiangle of the weight matrix, i.e. Jij, Kij and 
v j j  with i <~ j .  The chosen dynamics’imply that during the e e s c a l e  over which the Jii’s 
evolve, the spins are taken to come to complete thermal equilibrium, and the interactions 
then respond to the equilibrium-character of the spin system. Of coGse, the randomness 
contained within the couplings is l ie ly  U) lead to spin-glass character in the spin-system, 
which is l i e ly  to be associated with large timescales for the former equilibriation,. ~ This 
complication is a price of the simplicity of om chosen dynamical law, and also of the 
complete connectivity implicit in our model. 

It is advantageous to simplify the analysis by one further step, by confining attention 
to the equilibrium properties of the entire system, i.e., to the equilibrium of the J j j ,  which 
implies that of the spin-system itself. Our choice of a 6rstmder Langevin equation will 
allow this equilibrium behaviour to be readily characterized, and will lead us into a novel 
application of the replica method. By defining a Hamiltonian for the spin system 

and hence apartition function (dependent on the choice of the symmetric interactions) 

Zp(Mj1) = Trexp(-BH((SA ( J i j l ) )  (2.6) 
IS, 1 

we may identify the right-hand side of (2.3) as the gradient of a potential plus the noise 
term 
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It is well known that the equilibrium probability dishibution for such a diffusion in a 
potential is given by the Boltzmann form, and hence we may focus attention on the partition 
function of the interaction system, and employ it both as a generating functional of statistical 
averages of the interactions in equilibrium, and also as a source of order parameters for the 
spin system 
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Thus, for a dynamical system with adiabatically evolving interactions between the fast 
variables, within the (broad) framework imposed by the dynamical laws (2.2) and (2.3), the 
equilihrium propenies of the entire system may be investigated using equilibrium statistical 
mechanics. 

It is worthwhile assimilating (2.8) before proceeding with its analysis. Defining the ratio 
of the temperatures j/B to be a pzaieter  n, we note that if n happened to be a positive 
integer, then (2.8) would represent an integer moment of the partition function of the spin 
system. Further, if n was taken towards zero (meaning that the interactions are affected more 
by the stochastic noise, qjj(l), than the spins), then we would be led towards an average 
of’the free energy of the spin system, and (2.8) would show close similarities with the 
starting point of the Sherrington-Kirkpauick (Sherrington and Kirkpatrick 1975, hereafter 
referred to as SK) model of a spin-glass, involving quenched random interactions. Both 
these cases have been analysed using the replica method. In the former case (n E Z, treated 
in Sherrington 1980) the absence of any need to make analytic continuations makes the use 
of the replica method seem wholy mstworthy, but in the second application ( n  -+ 0) it is 
well known that the replica method develops subtleties absent from the former case. (Also 
discussed in Sherrington (1980) is the l i i i t  n -+ 00, where the weights are influenced more 
by the Hebbian stimulus (SjSj) than the q,,’s.) Given that it would be unduly restrictive 
to confine attention to an integer ratio of temperatures, we will be forced t6 address both 
these regimes, although the analytical pathologies of the small n scenario will themselves 
provide some insight into om system. The SK model has itself also been considered for 
finite n (Kondor 1983), although under more reshicted conditions than (2.8) permits. 

Before analysis becomes finally mctable, we will need to address the biases Kjj which 
steer the weights towards some desired values. In the spirit of Hebb’s rule, it would be 
reasonable to adopt a separable form for K;j, i.e. 

in which, in common with the chosen field term in (2.5), we imagine that a set of binary 
pattems, fr, are to be favoured states of the spins. As a first step we will confine attention 
to the situation of a single pattern ( p  = I) ,  which may be formally eliminated by the gauge 
transformations Si --f f,S;, Jij + fiJ;jej and Kij + t K & .  The extension to greater 
numbers of pattems although tractable would be somewhat involved. 

3. Analysis 

Having simplified our problem to a level amenable to analysis, we may proceed Io evaluate 
the interaction partition function 2,. We will invoke replica mean field theory, in which we 
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formally assume the ratio of temperatures, n, to be integral, but then attempt to analyticaJly 
continue our expressions to real n (without any reshiction in magnitude, although wc will not 
permit negative n). Using standard manipulations, we may reduce 2, to an extremization 
problem over the space of some replica-dependent order parameters. By this stage our 
problem has yielded a single-site spin Hamiltonian by vinue of our imposition of complete 
connktivity. 

mr 47' 
26 = e x p l y  + - N B  + Nn extr F ( { m ] ,  { q ) ) }  ' (3.1) 4pn 

in which y ,  S E 11,. . . . n) are replica indices, and 

The interpretation of these order parameters is as follows: 

where ( A )  denotes a B o l t "  average of A with energy given by the (replicated) spin 
Hamiltonian, Cy H([ST] .  [ L J ] ) ,  cf (2.5). for a given choice of weights. represents an 
average of B over the dynamics of { A J )  after these have reached equilibrium. These order 
parameters closely parallel those of spin-glass and neural network problems, save that the 
disorder average is replaced by a time average over the dynamics of the interactions. 

In order to make the correspondence of these expressions with those of the SK model (and 
of Sherrington 1980) more lucid. it is advantageous to define new parameters as follows: 

(3.4) 

and also to promote P ,  in preference to j ,  as the fundamental (inverse) temperature scale. 
Thus, for the SK model, JOIN would represent the mean-value coupling between spins, and 
j / N  would be their variance. However, these interpretations are closely tied with the limit 
n + 0 of this model. For the present problem, the first two moments of the couplings to 
leading order in N are 

Furthermore, there is a finite correlation between weights, in contrast to the SK model 

(3.6) 

(3.7) 
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In common with spin-glass problems we are faced with an extremization in (3.1) which 
must be analytically continued to real n. For positive integer n the analysis of Lieb 
(discussed in van Hemmen and Palmer 1979) shows thal the order parameters my and 
q y 6  are replica symmetric i.e., my = m V y  and q Y 6  = q V y  < 6 (to within possible 
sign changes due to the potential for antiparallel spin alignment in different replicas). The 
assumption of the same form of order parameters is known to be incorrect for n -P 0, 
but Little is known for general n. For n -+ 0 it is believed that Parisi’s choice of qy6 
(Parisi 198Oa,b) produces the correct thermodynamic behaviour for the SK model, and 
phenomena in agreement with simulations of this system, although a demonstration of 
the uniqueness or proof of the validity of the Parisi scheme has not come to OUT attention. 
Given that the considerable successes of the F’arisi hierarchical replica symmetry breaking 
formalism as applied to the SK model, we will adopt this ansatz for the present problem. 
This formalism also has the amactions of augmenting the replica symmetric ansatz with 
additional degrees of freedom, while remaining straightfowardly analytically continuable 
to arbiaary n, However, for simplicity we will consider only a one-step RSB for qy6 ,  rather 
than the full infinite hierarchy. Computationally, in areas of ow parameter space where 
q y 6  is found to reproduce the replica symmetric results we will directly employ the replica 
symmetric theory with enhanced confidence (and a reduced CPU budget). where replica 
symmetry is observed to break, in the conventional interpretation of this phenomenon, we 
expect diverging dynamical timescales for the spin system, and hence partial freezing of the 
system. 

Regarding the order parameters my, guided by the need to have a sensible limit n --f 0 
for the SK problem, and also the observation in de Almeida and Thouless (1978) that the 
‘dangerous’ tluctuations away from the replica symmetric saddle-point have no components 
Uansverse to my = m, we will assume that replica symmetry in this order parameter is 
always preserved, i.e., all replicas have the same net magnetization, even though they may 
have inequivalent ways of achieving it (hence a non-replica symmetric @). 

In view of the possibility of a tirst-order transition from a replica symmetric state 
to one having broken replica symmetry (as is observed by Krauth and M6zard 1989) in 
addition to that of a continuous hamition as seen in the Shenington-Kirkpatrick model, the 
extremization in (3.1) has been attempted in acknowledgement of both these pathologies. 
The first danger is related to the global stability of the replica symmetric saddle-pint, and 
has been tackled by searching for a number of possible exmmum values and choosing the 
best extremum found (we will have more to say about the label ‘best’ shortly). We thereby 
hope that should a first-order transition be exhibited by the dynamical system we would 
not overlook this in our numerical analysis of (3.1). Secondly there is the issue of local 
stability of the saddle-point chosen, with respect to fluctuations towards greater levels of 
replica symmetry breaking. Given that the full Parisi solution of the SK model is known to 
be only marginally stable (de Dominicis and Kondor 1983), there is little point in examining 
the local stability of a one-step replica symmetry broken solution, unless this has special 
features (such as found in Krauth and M6zard 1989). Therefore we will only examine the 
local stability of a replica symmehic solution of (3.1), following de Almeida and Thouless 
(de Almeida and Thouless 1978, hereafter referred to as AT). Thus where replica symme!q 
is found to be locally stable and globally so with respect to a one-step breaking, confidence 
in the replica symmetric solution seems justifiable. 

Following M6zard et nl (1987) in interpreting replica symmetry breaking in terms of 
the existence of disjoint ergodic components of phase spce (forming ‘pure’ thermodynamic 
states), which together make up the full Gibbs state, the need to clarify the thermal average 
in (2.3) becomes apparent. A pure-state average, (S,S,)? for state @, would be the most 
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natural object dynamically, as this reflects the excursions of the spin system over finite 
times, within a single deep valley (labelled ‘@’) of its energy landscape. In contmsl, a full 
Gibbs average would consider contributions to such an average over long enough timescales 
such that the spins could explore all deep valleys of. the energy landscape. Although this 
-second possibility represents a less realistic average in terms  of the dynamics which we 
wish to address, it is the form produced by the replica method. It should be recognised that 
specifying over which pure state to perform the average ( S i S j )  would require more intimate 
knowledge of the dynamical variables than we have allowed for. The expression provided 
by the replica method thus represents the best guess for this quantity, in  the absence of more 
information. Even under conditions where replica symmeny maintains, so that strictly only a 
single pure state contributes, the difficulty of separating broken ergodicity on the timescale 
of an experiment (or a simulation) from true thermodynamic broken ergodicity remains 
considerable. 

A few comments about the search for the ‘best’ exuemum in (3.1) are in order. Given 
that this exh-emization derives from a saddle-point integration ‘associated with OUT system 
size, N ,  becoming large, is would be logical to assume that this extremum should produce 
the maximum of the exponent. For positive integral n there should be no disputing this, but 
for n --f 0, the analysis of Sherrington and Kirkpatrick (1975) hdicates that the physically 
acceptable extremum is actually a minimum with respect to q. This can be accounted for 
by recognising that the q’s are i n ( n  - 1) in number, a quantity that changes sign at n = 1, 
turning a positive Hessian into a negative one; However, no such metamorphosis occurs for 
the order parameter m, with respect to which our exponent should always be maximized. 
Therefore, for n =- 1 we may maximize OUT exponent witii respect to all variables, but for 
n < 1 the two classes of order parameter must be treated sepdately. whilst this foible of the 
replica method seems to be devoid of physical implications. it is an additional complication 
of the numerical analysis of gj, particularly when replica symme!xy breaking is entertained 

The object of central concem will be the precursor of the free energy, F({m),  (4)). 
which we consider in two basic~forms. Adopting a replica symmetric ansatz. F([mJ, (4)) 

GRS = l n [ / D x c o s ~ ( B [ m J o + h + x & ] ) ]  -$zB2qj.  

(We adopt the shorthand Dx = e-fZ’dx/,iJT;;.) For a one-step breaking ‘in which 

(3.8) 

(3.9) 

. 

(3.10) 

Fdse is then to be ex,!xemized with respect to all order parameters, m, 41, qo and r .  For 
this one-step brea!+ng. one may obtain the distribution of overlaps, P ( q )  as 

(3.1 1) 
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from which we deduce that the order parameter r must lie in the interval [n, 11, if P ( q )  is to 
be non-negative (Mhard el a1 1987). We note in passing that P(q), or its moments, should 
be preferred to the parameters (40.. .. , qs, rl, . . . , rs) (in an s-step breaking) as a means 
of characterising the symmetry breaking present. Different, although physically equivalent, 
choices of these order parameters will have identical P(q)'s; e.g. there are three ways in 
which F A s  may reduce to FRS, namely q1 = qo, r = n or r = 1. 

Under conditions of replica symmetry, we may give concise expressions for the spin 
moments 

m= [/Dxcosh"(E)tanhP(B) 1-l  (3.12) 
E = , 8 ( m J o + h + x ( q j ) ' ~ Z ) .  

The AT-eigenvalue associated with replica symmetry breaking, is then given as 
-- 

(3.13) h = gZf( 1 - pf[l -~Z(S,) Z~ + ( s 4  i) I]. 
If A 

now proceed to examine the thermodynamics of OUT coupled-dynamical system. 

0 the replica symmetric saddle-point is locally stable. 
Having introduced the relevant order parameters, and the issues affecting them, we may 

4. Theoretical results 

Considering first the case JO = h = 0. we may ignore the order parameter m, and look for 
extrema of F(0,  (41). which would represent paramagnetic phases if qvs  = 0,or spin-glass 
phases if q Y 6  # 0, signalling an inhomogeneous average alignment of the spins. For n > 2 
and integral. this problem reduces to that investigated by Shemngton (1980) (where the spin- 
glass phase corresponds to an inter-replica ordering). It was observed that both second- and 
6rst-order transitions from paramagnetic to spin-glass states could occur, although only for 
n = 2 was the former nature possible. For the present problem we find that FRS leads 
to a natural interplation between the points considered by Shenington (1980), and that 
this replica symmehic soiution appears to locally stable and equivalent to that produced by 
offering a one-step breaking (i.e., employing FAse) at least for n > 1. If n =- 2 we find 
exclusively 6rst order transitions in  26 (as predicted by Shenington 1980), but for n c 2 
all such phase changes appear to be second order, and moreover to occur for = 1. 
Comparison with the analogous transition temperature for the SK model shows the two to be 
identical, i.e., for n < 2 (T < 2?) the dynamics of the couplings exert negligible influence 
on this transition, except insofar as these dynamics give the interaction weights a random 
distribution, characterized by the imposed values of JO and f. If n > 2 the mutual influence 
of the spins and weights produces a non-nivial change 'in this phase transition, altering both 
its order and its location (such that ,8cjr/z < 1). The transition temperature for a range of 
n is indicated in figure 1. 

In order to explore the incidence of replica symmetry breaking, we have also considered 
varying the replica number n, for fixed p. We have found no evidence of 6rst-order 
transiticins from replica symmetric to replica symmetry broken states, only continuous 
transitions occurring at the point where the RS solution becomes locally unstable (where 
h -+ O', equation (3.13)). Graphs illusmtive of this effect are offered in figure 2. 
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Figure 1. P -+ SG transition far various n,  at JO = 0, .? = 1. For n =- 2 the transition is first 
order, but is second order elsewhere. The inverse spin temperature, p, at the transition is shown 
on the left; the.corresponding value of q (in the~sc phase) is indicated on the right 

Figure 2. Indicated on the left are order parameters qm (dotted mwe) and (qksB) & o(qkss) 
(full curves) at B = 2, SO = 0. j = I .   he AT line for mese J ‘ S  is shown on the righi. 

Near the transition kmperature of a similar model, and for n c 2, Kondor 
(1983) has applied the full Parisi hierarchical symmetry-breaking (cf Parisi 198Ob) and 
has demonstrated that the condition of local stghility of the saddle-point assumed- is 
more shingent than other requirements which the replica method should fulfil, such as 
monotonicity and convexity in n. The possibility of Eirst-order msitions waS not pertinent 
to this work. 

4tis interesting to note that replica symmetry breaking, at least as signalled by ‘the change 
in local stability on the AT l i e ,  occurs only for n c 1 and that the value of n a  appears 

= to have a local extremum. We have not been able to make analytic statments about  AT 
for general n ,  although for large p, nAT - plj-’/’ [21n(~.f’/z)]”z, as given by Kondor 
(1983). It would seem possible that the pathologies of the replica method, manifested as 
replica symmetry breaking, could show up as early as n c~ 2, where there are fewer than two 
replicas even though the order panmeter 4 purports to be the mutual overlap of two replicas. 
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Seemingly this is not significant until rather smaller values of n. we have considered FAB 
for n = 1 + E ,  under which circumstances we find that replica symmeny appears to hold at 
least to lowest order in &, and moreover, the order parameter q may be defined in thc limit 
n + 1, and has a value which interpolates between those obtained on either side of this 
value. For such n, the saddle-point conditions form and q decouple, with the condition on 
q being non-hivial, such that q z mz 

R W Penney et a1 

m = tanh(fJ(mJ0 + h)) (4.1) 

with q then given by minimising 

- 1 . 2 -  q J ( q  + 2) + / Dx In(cosh( E)) cosh( E) exp ( - t p 'q j )  

x [cosh(p(mJo + h))]-' . (4.2) 

If extrema of F({m), (4)) are sought with non-zero magnetization, m, in the absence of 
a magnetic field, h,  the parameter Jo is always signilicant. With Jo finite, there are expected 
to be three distinct phases: paramagnetic (P, m = 0 = q,  indicating lack of spin ordering), 
spin-glass (SG, m = 0, q # 0, denoting a spatially-disordered local alignment of spins) and 
now ferromagnetic (F, m # 0 # q,  signalling an overall net alignment of moments, with 
greater local order if q z m'). The P+SG transition is unaffected by having JO non-zero 
(because JO couples only to m which is zero near the transition), so the same phenomena are 
to be expected here as for the case above. By considering the replica symmetric saddle-point 
conditions 

m = [/Dx cosh"(E)tanh(E) I-' (4.3) 

q=[/Dxcosh"(E)tanh*(E) (4.4) 

for small m and q ,  following Sherrington (1980), one may determine the orders of the 
various phase transitions, and where these are second order, give expressions for the relevant 
transition temperatures. For the P --c F transition, if p-'?' z 3n - 2 this phase change is 
second order, and occurs for p JO = 1. Again, comparison of this condition with that for 
the SK model shows the transition temperature to be unaffected, for this choice of n. Only 
if p-2j-'  < 3n - 2 do the dynamics of the weights influence this transition. 

Regarding the boundary separating SG and F phases, we focus on the point where this 
changes from a first- to second-order line. Even though the boundary is always distinct from 
that of the SK model, we would argue that if the order of the transition is unaffected then 
the influence of the weight dynamics must be marginal. We emphasize that the different 
relation between p and q in the SG phase. as compared with that in the SK model, means that 
the weight dynamics result in a repositioning of this phase boundary under all conditions, in 
contrast to the boundaries treated above. This effect foUows from the mutual correlation of 
weights (3.6), given that, within the SG phase, the mean and variance of individual weights 
(3.5) match those of the SK model. 

Shemngton (1980) observed that for n 2 4 (and integral), the SG+F transition was 
always second order, whilst for n ~ [ 2 ,  3) both orders were possible. We find that both 
orders persist beyond n = 3, but, owing to numerical difficulties, the limit was only inferred 
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using an extrapolation procedure. Given that the temperature at which the SG --f F lransition- 
order changes i s  bounded above by the temperature of the P t SG Vmsition, and that the 
numerical difficulties stem from these two becoming proximal beyond n - 3, we have 
exaapolated these two t empera t e  to coincidence (as functions of n) in order to deduce 
the limit beyond which the SO --f F lransition is uniquely second order. p h e  two temperature 
cwes involved are those shown in figure 3.) It thus appears that for n > 3.32 (T > 3.32?) 
the weight-dynamics leave the, order of this transition unchanged from that of a spin-system 
with suitably random interactions. We give ow calculated values of the temperature of the 
order change in figure 3 (the value JO is uniquely determined on this line). 

Examining the domain within which replica symmetry breaking occurs ‘ i s  a 
compuRtionally intensive task. Rather than consider aonestep breaking scheme and explore 
where this deviates from a replica symmehic approach (as was viable for the case JO = 0), 
we will consider only the limit of local stability of the replica s y h e h i c  solution (i.e., the 
AT surface). Given that figure 2 would suggest that the AT line does indeed s i g d  the onset 
of RSB, we believe that this surface should hold physical significance (again, this is not 
always the case, cf Krauth and M&ad 1989). 

For large ,3 (such that m, q + l), one may generalize Kondor’s expression for the 
stability limit, such that 

nAT - P - ~ . F ~ P {  i ~ o l j - l / z +  J J ~ J - ~ + ~ I ~ ( ~ J L / ~ ) ) .  (4.5) 

For smaller ,3 the AT surface moves from the ferromagnetic phase (where it resides for 
the SK model) at lower temperatures, into the spin-glass phase for higher temperatures., A 
section of this surface is illustiated in figure 4. Again, only for n below about 0.3 does 
replica symmetry appear to break, i.e. for T > 0.3? the dynamics of the~spins should 
remain ergodic, with panial~ freezing of the system expected only for smaller temperature 
ratios. 

0.3 

0.2 

0.1 

0 

0.7 

Figure 3. Inverse temperatures (B) 8 f  which SO-+ P 
transition changes order (full CUIVC) as compared with 
p” so lranrition (dotted .curve).  both CUNCS have 
J = 1. 

Figure 4. The Almeidi-Thouless surface for various 
Jo and j  with^ J = 1. The surface lies entirely above 
n = 0. Grid intersections represent calculaled values 
of n; where femmgnetic order is exhibited (m# 0), 
these nodes are marked with points. 
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5. Simulations of the dynamical system 

There are two possible motivations lor performing simulations for this problem, and they 
would lead to rather different computational strategies. Firstly, there is the question of 
whether the replica-method is successful in averaging an arbitrary positive power of a spin 
partition function. Altematively, one might simulate the dynamical laws (2.2) and (2.3) 
directly and compare their behaviour with the predictions of the replica method. 

Seeking to establish the viability of the replica method would focus one's simulations 
on (2.8); possibly with Monte Carlo integration being used for the mace over the couplings, 
within which the spin partition function would be evaluated for each choice of interactions. 
The calculation of Zg might then be facilitated by using optimization procedures. such as 
were used by Kirpanick and Shemngton (1978) in order to identify the dominating low- 
energy spin configurations, without requiring all the numerous spin states to be addressed 
individually. However, for the SK model, in which the weights Jij are quenched random 
variables, it is argued that the free energy of the spin system (-p-'N-' h Z,) should be 
self-averaging in the thermodynamic limit, i.e., that this quantity should be the same for 
all likely realizations of the weights. Therefore, if one sought to check the replica analysis 
by averaging [Zj]" = exp(n In Zg), as suggested by (2.8), then one would be immediately 
in difficulty. That the spin free energy is self averaging implies that the choice of weights 
alters In Zg at a lower order than the dominant,N', and hence that the variation in [Zg]" 
that non-uivially weights the distribution of the Jij (as implied by (3.9, (3.6)), is due to 
these marginal corrections. So, in order to numerically examine 2s. and allied quantities 
such as q and m, it is likely that great care would be needed in evaluating Zg so as to 
correctly weight different choices of Jij in (28). Both because of these likely difficulties, 
and also because of the considerable successes of the replica method for n + 0 in addition 
IO its more rigorous application for n E Z, we have chosen to simulate the dynamics of the 
spins and interactions directly. 

The modelling of (2.2). and particularly (2.3), has its own complications. The need to 
allow the spin system to reach equilibrium before updating the interactions (in accordance 
with (2.3)) may demand long equilibriation times, given the spin-glass character of this 
system. Further, this, potentially slow, relaxation must be endured repeatedly until the 
interactions have themselves been allowed sufficient time to reach equilibrium. The 
longevity of this Iwo-stage process has limited us to examination of quite modest system 
sizes. Nevertheless some confirmation of the analytic results has been obtained, thereby, 
implicitly, lending support to the replica method that underlies them. 

We have concentrated on n 2 2, this being the region where the weight dynamics seem 
most significant, and have taken Jo = 0 for simplicity. We proceed as follows: for a 
given set of couplings, the whole spin system is updated R I  times, using the Memopolis 
algorithm, with individual spins being addressed in random order. These iterations are 
intended to allow the spin system to come to thermal equilibrium. The next Rz spin-system 
updates are used to measure the order parameters (Si) and the correlation functions (SiSj).  
The latter quantities are then used to.evolve the weights, using a time-step At = z 6 (the 
choice of which influences the Gaussian noise term in (2.3). such that var(q) - S-'/'). This 
whole process is repeated R3 times (to allow for overall thermal equilibriation), after which, 
over the next R4 such iterations, the order parameters m and q are obtained by averaging 
the values of N-' xi($) and N-' Ci(Si)' respectively. (The error bars in figures 5 
and 6 are calculated, over these R d  weight-updates, as standard deviations of the quantity 
N - '  xi (Si)'. Theory would predict these variations to vanishin the thermodynamic limit.) 
Thereafter the spin temperature is reduced (holding n = B / p  fixed), and the above steps 
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Figure 5. Comparison of theoretical order parameter, q, (full mwe) with simulation results 
@ah6), for two temperarure d o s ,  n = 3 and n = 4, bath for N = 80, 30 = 0, J = 1. 

Figure 6. Theoretical order parameter. q ,  compared "th simulation results. for n = 2, for two 
system sizes, N = 40 and N = 80, bath at 30 = 0, J ~ =  1. 

retraced. Typically R I ,  R2 - 250, R3, R 4  - 500 and 6 - 0.01. That the results obtaineb 
by doubling the equilibnation and averaging times are n d  qualitatively different from 
those presented suggests that thermal equilibrium has been approached, although no more 
sophisticated testk have been undeltaken. For reasonable sizes of system, broader timespans 
would have required inordinate amounts of computer time. 

Our initial conditions involve Jij = 0 together with a random choice of Si. A small field 
is applied to the spin system until the Erst weight update, in order to encourage ordering, 
 but is thereafter removed. It was found rare for the spin system to jump reliably from 
the paramagnetic phase to the more ordered spin-glass phase (at least when a first order 
transition was expected), so our experiments always proceed from low to high temperature. 
In this way our system is likely always to start in the 'correct' phase. 

. 
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Our results for n = 3,4'(, shown in figure 5, are very suggestive of the first-order 
transition expected on the basis of our calculations (and those of Shenington 1980). For the 
SK model, in which the weights axe quenched random variables, a second order bansition 
at ,5'j1/' = 1 would be expected. That there is a plausible agreement between our replica 
calculations and the simulations of the dynamics that yielded them, give some credibility 
to the replica method for n > 0, as applied here. 

Simulations of the dynamics for n = 2, where a second-order transition is expected 
at ,5'j1/2 = 1, also show fair agreement with theory (figure 6), dthough finite-size effects 
appear to be more significant than for larger n. Examination of various increasing choices 
of system size, N ,  indicates definite reduction in the noise in the measured q, with improved 
agreement between theory and experiment towards larger N ,  although any finite-size scaling 
analysis would not seem justifiable for the data available. 

6. Conclusion 

We have investigated a spin model with two levels of dynamics, in which both spins and 
their interactions are dynamical variables. Mathematical analysis using the replica method, 
but for finite positive replica number, n, has indicated the existence of phase transitions in 
the system, whose nature can differ markedly from that of the underlying spin system in 
isolation. Instances where the influence of the spin system on the couplings leads to changes 
in both the order and location of phase transitions, relative to those for suitably random 
choices of interactions, have been predicted in addition to cases where the interdependence 
of the two sets of dynamical laws has insignificant effects. The pertinence of the relative 
noise levels of the spin and weight dynamics (i.e. BIB), has been indicated. Simulation 
results have shown good correspondence with the theoretical predictions. 

In addition to offering some insight into likely propenies of a class of coupled dynamical 
systems, the similarity of simulations to our predictions based on the replica method, in a 
less familiar realization, provides some evidence that the replica method is rmstworthy over 
a wide range of positive n, at least where replica symmetry is preserved. 

Towards the closing stages of our work we have learned that the replica method for 
n < 0 was being investigated by MBzard et al (private communication). In a dynamical 
context, this would correspond to an anti-Hebbm law for the interaction dynamics. 
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